Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

N-(2-Methylphenyl)succinamic acid

B. Thimme Gowda, ${ }^{\text {a* }}$ Sabine Foro, ${ }^{\text {b }}$ B. S. Saraswathi ${ }^{\text {a }}$ and Hartmut Fuess ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 20 February 2010; accepted 19 March 2010

Key indicators: single-crystal X-ray study; $T=299 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.060 ; w R$ factor $=0.149 ;$ data-to-parameter ratio $=13.1$.

In the crystal structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$, the conformations of the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds in the amide segment are anti to each other and that of the amide H atom is syn to the ortho-methyl group in the benzene ring. In the crystal, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions lead to carboxylic acid inversion dimers and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into infinite chains. In addition, the crystal structure exhibits intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between one of the methyl H atoms and the benzene ring of neighbouring molecules.

Related literature

For our study of the effect of ring and side-chain substitutions on the crystal structures of anilides and for related structures, see: Gowda et al. (2007; 2009; 2010); Jagannathan et al. (1994). For the modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976).

Experimental

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$

$$
\alpha=86.20(2)^{\circ}
$$

$M_{r}=207.22$
$\beta=83.02(1)^{\circ}$
Triclinic, $P \overline{1}$
$a=4.7756$ (9) \AA
$\gamma=88.45(2)^{\circ}$
$b=6.1854$ (9) \AA
$V=534.55(15) \AA^{3}$
$Z=2$
$c=18.275$ (3) A
Mo $K \alpha$ radiation

$$
\mu=0.09 \mathrm{~mm}^{-1}
$$

$$
T=299 \mathrm{~K}
$$

Data collection

Oxford Diffraction Xcalibur diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford
Diffraction, 2009)
$T_{\text {min }}=0.963, T_{\text {max }}=0.994$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.149$
$S=1.10$
$\Delta \rho_{\max }=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}$

1873 reflections
143 parameters
13 restraints
$0.40 \times 0.12 \times 0.06 \mathrm{~mm}$

2928 measured reflections
1873 independent reflections
1426 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.010$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g$ is the centroid of the C1-C6 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.81(4)$	$2.13(4)$	$2.922(3)$	$164(3)$
$\mathrm{O} 3-\mathrm{H} 3 O \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.85(2)$	$1.82(2)$	$2.664(3)$	$173(5)$
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{Cg}^{\mathrm{iii}}$	0.96	2.81	$3.596(4)$	139

Symmetry codes: (i) $x-1, y, z$; (ii) $-x,-y+2,-z+1$; (iii) $x, y+1, z$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2138).

References

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Gowda, B. T., Foro, S., Saraswathi, B. S. \& Fuess, H. (2010). Acta Cryst. E66, o394.
Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. \& Fuess, H. (2009). Acta Cryst. E65, o399.
Gowda, B. T., Kozisek, J., Svoboda, I. \& Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.
Jagannathan, N. R., Rajan, S. S. \& Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, o908 [doi:10.1107/S1600536810010329]

N-(2-Methylphenyl)succinamic acid

B. T. Gowda, S. Foro, B. S. Saraswathi and H. Fuess

Comment

As a part of studying the effect of ring and side chain substitutions on the crystal structures of anilides (Gowda et al., 2007; 2009; 2010), the crystal structure of N-(2-methylphenyl)succinamic acid (I) has been determined. The conformations of $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds in the amide segment are anti to each other. The conformation of the amide oxygen and the carbonyl oxygen of the acid segment are also anti to each other, similar to that observed in N-(2-chlorophenyl)succinamic acid (II) (Gowda et al., 2009), but contrary to the syn conformation observed in N-(3-methylphenyl)succinamic acid (III) (Gowda et al., 2010). Further, the conformation of both the $\mathrm{C}=\mathrm{O}$ bonds are anti to the H atoms of their adjacent $-\mathrm{CH}_{2}$ groups (Fig. 1) and the $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds of the acid group are in syn position to each other, similar to that observed in (II) and (III).

The conformation of the amide hydrogen is syn to the ortho- methyl group in the benzene ring, similar to that observed between the amide hydrogen and the ortho-Cl in (II), but contrary to the anti conformation observed between the amide hydrogen and the meta-methyl group in the benzene ring of (III). The intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds pack the molecules into infinite chains in the structure (Table 1, Fig.2). Additionally, the crystal packing (Fig. 2) is further stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the methyl H atom and the benzene ring of neighbouring molecules, with a $\mathrm{C} 11 — \mathrm{H} 11 \mathrm{~A} \cdots \mathrm{Cg}^{\text {iii }}$ (Table $1 ; \mathrm{Cg}$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring). The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Experimental

The solution of succinic anhydride (0.01 mole) in toluene $(25 \mathrm{ml})$ was treated dropwise with the solution of o-toluidine $(0.01$ mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one h and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted o-toluidine. The resultant solid N-(2-methylphenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra. The needle like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and its position refined with $\mathrm{N}-\mathrm{H}=0.82$ (3) \%A. The H atom of the OH group was located in a difference map and later restrained to the distance $\mathrm{O}-\mathrm{H}=0.82(2) \AA$. The other H atoms were positioned with idealized geometry using a riding model with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$. All H atoms were refined

supplementary materials

with isotropic displacement parameters (set to 1.2 times of the U_{eq} of the parent atom). O 2 and O 3 are slightly disordered and their U^{ij} components were restrained to approximate isotropic behavoir.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes : (i) $x-1, y, z$; (ii) $-x,-y$ $2,-z+1$; (iii) $x, y+1, z$; (iv) $x+1, y, z$; (v) $x, y-1, z$.]

N-(2-Methylphenyl)succinamic acid

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$
$Z=2$
$M_{r}=207.22$
$F(000)=220$
Triclinic, $P \mathrm{~T}$
Hall symbol: -P 1
$a=4.7756$ (9) \AA
$b=6.1854$ (9) \AA
$c=18.275(3) \AA$
$\alpha=86.20(2)^{\circ}$
$\beta=83.02(1)^{\circ}$
$D_{\mathrm{x}}=1.287 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1326 reflections
$\theta=3.3-27.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Needle, colourless
$0.40 \times 0.12 \times 0.06 \mathrm{~mm}$

$$
V=534.55(15) \AA^{3}
$$

Data collection

Oxford Diffraction Xcalibur
diffractometer
Radiation source: fine-focus sealed tube graphite

1873 independent reflections
1426 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.010$
Detector resolution: 10.0 pixels mm^{-1}
φ and ω scans
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-5 \rightarrow 4$
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.963, T_{\text {max }}=0.994$
$k=-7 \rightarrow 7$
$l=-21 \rightarrow 21$

2928 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.149$
$S=1.10$
1873 reflections
143 parameters
13 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0463 P)^{2}+0.4371 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.31$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.0519(5)$	$-0.0093(4)$	$0.80080(16)$	$0.0415(7)$
C2	$-0.0898(6)$	$-0.0197(5)$	$0.87207(16)$	$0.0445(7)$
C3	$-0.0147(7)$	$-0.1877(5)$	$0.92098(19)$	$0.0577(9)$
H3	-0.1085	-0.1994	0.9687	0.069^{*}
C4	$0.1940(8)$	$-0.3363(5)$	$0.9006(2)$	$0.0685(10)$
H4	0.2402	-0.4465	0.9344	0.082^{*}
C5	$0.3342(8)$	$-0.3227(5)$	$0.8307(2)$	$0.0648(10)$
H5	0.4767	-0.4227	0.8170	0.078^{*}
C6	$0.2631(7)$	$-0.1594(5)$	$0.78027(19)$	$0.0538(8)$
H6	0.3572	-0.1504	0.7326	0.065^{*}
C7	$0.1616(5)$	$0.2852(5)$	$0.70612(15)$	$0.0424(7)$
C8	$0.0310(5)$	$0.4576(5)$	$0.65761(16)$	$0.0476(8)$
H8A	-0.1193	0.3942	0.6354	0.057^{*}
H8B	-0.0521	0.5710	0.6880	0.057^{*}
C9	$0.2412(6)$	$0.5563(5)$	$0.59738(17)$	$0.0504(8)$
H9A	0.4044	0.6001	0.6192	0.060^{*}
H9B	0.3040	0.4467	0.5632	0.060^{*}

C10	$0.1294(6)$	$0.7472(5)$	$0.55537(16)$	$0.0474(8)$
C11	$-0.3113(7)$	$0.1471(6)$	$0.89617(19)$	$0.0583(9)$
H11A	-0.2352	0.2894	0.8858	0.087^{*}
H11B	-0.3683	0.1241	0.9483	0.087^{*}
H11C	-0.4716	0.1340	0.8699	0.087^{*}
N1	$-0.0225(5)$	$0.1572(4)$	$0.74871(14)$	$0.0440(6)$
H1N	$-0.189(7)$	$0.181(6)$	$0.7458(19)$	0.066^{*}
O1	$0.4164(4)$	$0.2708(4)$	$0.70798(13)$	$0.0665(8)$
O2	$-0.0821(6)$	$0.8479(5)$	$0.57850(15)$	$0.0915(10)$
O3	$0.2743(7)$	$0.8021(5)$	$0.49406(15)$	$0.0937(10)$
H3O	$0.201(10)$	$0.914(6)$	$0.474(3)$	0.141^{*}

Atomic displacement parameters $\left(\lambda^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0352(14)$	$0.0405(15)$	$0.0501(17)$	$-0.0014(12)$	$-0.0162(12)$	$0.0080(13)$
C2	$0.0374(15)$	$0.0466(17)$	$0.0493(17)$	$-0.0046(12)$	$-0.0111(13)$	$0.0108(14)$
C3	$0.0569(19)$	$0.056(2)$	$0.058(2)$	$-0.0059(16)$	$-0.0119(15)$	$0.0210(16)$
C4	$0.078(2)$	$0.0465(19)$	$0.081(3)$	$0.0029(18)$	$-0.028(2)$	$0.0240(18)$
C5	$0.068(2)$	$0.0458(19)$	$0.082(3)$	$0.0179(16)$	$-0.0214(19)$	$0.0020(18)$
C6	$0.0546(18)$	$0.0494(18)$	$0.059(2)$	$0.0056(15)$	$-0.0137(15)$	$-0.0010(15)$
C7	$0.0285(13)$	$0.0535(17)$	$0.0441(16)$	$0.0032(12)$	$-0.0069(11)$	$0.0090(13)$
C8	$0.0322(14)$	$0.0579(19)$	$0.0505(18)$	$0.0028(13)$	$-0.0069(12)$	$0.0156(15)$
C9	$0.0401(15)$	$0.0571(19)$	$0.0502(18)$	$0.0089(14)$	$-0.0007(13)$	$0.0130(15)$
C10	$0.0388(15)$	$0.0537(18)$	$0.0463(17)$	$0.0047(14)$	$-0.0009(13)$	$0.0122(14)$
C11	$0.0491(18)$	$0.066(2)$	$0.056(2)$	$0.0067(16)$	$-0.0015(15)$	$0.0094(16)$
N1	$0.0280(11)$	$0.0517(15)$	$0.0509(14)$	$0.0021(11)$	$-0.0099(10)$	$0.0143(11)$
O1	$0.0273(10)$	$0.0858(17)$	$0.0817(17)$	$0.0013(10)$	$-0.0105(10)$	$0.0374(13)$
O2	$0.0759(17)$	$0.0922(19)$	$0.0891(19)$	$0.0379(15)$	$0.0237(14)$	$0.0444(15)$
O3	$0.102(2)$	$0.0900(19)$	$0.0713(17)$	$0.0412(16)$	$0.0292(15)$	$0.0383(14)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.387(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.391(4)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.423(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.393(4)$
$\mathrm{C} 2-\mathrm{C} 11$	$1.505(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.372(5)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.367(5)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.385(5)$
C5—H5	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{O} 1$	$1.222(3)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.340(4)$
C6-C1-C2	$120.7(3)$

$\mathrm{C} 7-\mathrm{C} 8$	$1.512(4)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.506(4)$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 9-\mathrm{C} 10$	$1.488(4)$
$\mathrm{C} 9-\mathrm{H} 9 A$	0.9700
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9700
$\mathrm{C} 10-\mathrm{O} 2$	$1.218(4)$
$\mathrm{C} 10-\mathrm{O} 3$	$1.274(4)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9600
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.81(4)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O}$	$0.85(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.0

sup-4

supplementary materials

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$120.0(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$119.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.5(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$121.4(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 11$	$121.1(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.7(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.1
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.2(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.9
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.1
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.1
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.1(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.9
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.9
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$123.0(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$121.8(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$115.1(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$112.8(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.0
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-1.1(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.7(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$177.5(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$-2.7(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.0(5)$
$\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-177.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.2(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.6(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.5(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.4(5)$

C9-C8-H8B	109.0
C7-C8-H8B	109.0
H8A-C8-H8B	107.8
C10-C9-C8	114.1 (2)
C10-C9-H9A	108.7
C8-C9-H9A	108.7
C10-C9-H9B	108.7
C8-C9-H9B	108.7
H9A-C9-H9B	107.6
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{O} 3$	122.0 (3)
O2-C10-C9	122.6 (3)
O3-C10-C9	115.4 (3)
C2-C11-H11A	109.5
C2-C11-H11B	109.5
H11A-C11-H11B	109.5
$\mathrm{C} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
C7-N1-C1	124.8 (2)
C7-N1-H1N	117 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	118 (3)
$\mathrm{C} 10-\mathrm{O} 3-\mathrm{H} 3 \mathrm{O}$	110 (4)
N1-C1-C6-C5	-179.4 (3)
O1-C7-C8-C9	17.9 (5)
N1-C7-C8-C9	-164.8 (3)
C7-C8-C9-C10	-171.8 (3)
C8-C9-C10-O2	17.7 (5)
C8-C9-C10-O3	-164.0 (3)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	0.0 (5)
C8-C7-N1-C1	-177.2 (3)
C6-C1-N1-C7	-48.9 (4)
C2-C1-N1-C7	131.2 (3)

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{i}}$	$0.81(4)$	$2.13(4)$	$2.922(3)$	$164(3)$
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{O} \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.85(2)$	$1.82(2)$	$2.664(3)$	$173(5)$
$\mathrm{C} 11 — \mathrm{H} 11 \mathrm{~A} \cdots \mathrm{Cg}^{\mathrm{iii}}$	0.96	2.81	$3.596(4)$	139.

Symmetry codes: (i) $x-1, y, z$; (ii) $-x,-y+2,-z+1$; (iii) $x, y+1, z$.
supplementary materials

Fig. 1

Fig. 2

